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Learning from prepandemic data to forecast 
viral escape

Nicole N. Thadani1,6, Sarah Gurev1,2,6, Pascal Notin3,6, Noor Youssef1, Nathan J. Rollins1,5, 
Daniel Ritter1, Chris Sander1,4, Yarin Gal3 & Debora S. Marks1,4 ✉

Effective pandemic preparedness relies on anticipating viral mutations that are  
able to evade host immune responses to facilitate vaccine and therapeutic design. 
However, current strategies for viral evolution prediction are not available early in a 
pandemic—experimental approaches require host polyclonal antibodies to test 
against1–16, and existing computational methods draw heavily from current strain 
prevalence to make reliable predictions of variants of concern17–19. To address this,  
we developed EVEscape, a generalizable modular framework that combines fitness 
predictions from a deep learning model of historical sequences with biophysical and 
structural information. EVEscape quantifies the viral escape potential of mutations  
at scale and has the advantage of being applicable before surveillance sequencing, 
experimental scans or three-dimensional structures of antibody complexes are 
available. We demonstrate that EVEscape, trained on sequences available before 
2020, is as accurate as high-throughput experimental scans at anticipating pandemic 
variation for SARS-CoV-2 and is generalizable to other viruses including influenza,  
HIV and understudied viruses with pandemic potential such as Lassa and Nipah. We 
provide continually revised escape scores for all current strains of SARS-CoV-2 and 
predict probable further mutations to forecast emerging strains as a tool for 
continuing vaccine development (evescape.org).

Viral diseases involve a complex interplay between immune detection 
in the host and viral evasion, often leading to the evolution of viral 
antigenic proteins. Antibody escape mutations affect viral reinfection 
rates and the duration of vaccine efficacy. Therefore, anticipating viral 
variants that avoid immune detection with sufficient lead time is key 
to developing optimal vaccines and therapeutics.

Ideally, we would be able to anticipate viral immune evasion using 
experimental methods such as pseudovirus assays1 and higher- 
throughput deep mutational scans2–16 (DMSs) that measure the ability of 
viral variants to bind to relevant antibodies. However, these experimen-
tal methods require antibodies or sera representative of the aggregate 
immune selection imposed on the virus, which become available only 
as large swaths of the population are infected or vaccinated, limiting 
the impact for early prediction of immune escape. In addition, as pan-
demic viruses can evolve rapidly (tens of thousands of new SARS-CoV-2 
variants are sequenced each month), systematically testing all variants 
as they emerge is intractable, even without considering the effects of 
potential mutations on circulating strains.

It is therefore of interest to develop computational methods for 
predicting viral escape that can be used to identify mutations that may 
emerge. An ideal model would be able to assess escape likelihood for 
as-yet-unseen variation throughout the full antigenic protein, would 
inform the design of targeted experiments, would be revised with pan-
demic information and would make predictions with sufficient lead 

time for vaccine development (that is, before immune responses to 
the virus are observed). However, previous computational methods 
for forecasting viral fitness or immune escape depend critically on 
real-time sequencing or pandemic antibody structures, limiting their 
ability to predict unseen variants and making them impractical for 
vaccine development during the onset of a pandemic17–19.

In this work, we introduce EVEscape, a flexible framework that 
addresses the weaknesses of previous methods by combining a deep 
generative model trained on historical viral sequences with structural 
and biophysical constraints. Unlike previous methods, EVEscape does 
not rely on recent pandemic sequencing or antibodies, making it appli-
cable both in the early stages of a viral outbreak and for continuing 
evaluation of emerging SARS-CoV-2 strains. By leveraging functional 
constraints learned from past evolution, as successfully demonstrated 
for predicting clinical variant effects20–22, EVEscape can capture relevant 
epistasis23–25 and thus predict mutant fitness in the context of any strain 
background. Moreover, EVEscape is adaptable to new viruses, as we 
demonstrate in both our validation on SARS-CoV-2, HIV and influenza 
and in predictions for the understudied Nipah and Lassa viruses. This 
approach enables advance warning of concerning mutations, facilitat-
ing the development of more effective vaccines and therapeutics. Such 
an early warning system could guide public health decision-making and 
preparedness efforts, ultimately minimizing the human and economic 
impact of a pandemic.
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EVEscape combines deep learning models and 
biophysical constraints
Viral proteins that escape humoral immunity disrupt polyclonal anti-
body binding while retaining protein expression, protein folding, host 
receptor binding and other properties necessary for viral infection 
and transmission8. We built a modelling framework, EVEscape, that 
incorporates constraints from these different aspects of viral protein 
function learned from different data sources. We express the probabil-
ity that a mutation will induce immune escape as the product of three 
probabilities: the likelihoods that a mutation will maintain viral fitness 
(‘fitness’ term), occur in an antibody-accessible region (‘accessibility’ 
term) and disrupt antibody binding (‘dissimilarity’ term) (Fig. 1a and 
Extended Data Fig. 1). These components are amenable to prepandemic 
data sources, allowing for early warning (Fig. 1b).

First, we estimated the fitness effect of substitution mutations  
(subsequently referred to as mutations) using EVE20, a deep variational 
autoencoder trained on evolutionarily related protein sequences 
(Supplementary Tables 1 and 2) that learns constraints underpinning 
structure and function for a given protein family. Consequently, EVE 
considers dependencies across positions (epistasis), capturing the 
changing effects of mutations as the dominant strain backgrounds 
diversify from the initial sequence23–25. We demonstrate the efficacy of 
EVE by comparing model predictions and data from mutational scan-
ning experiments that measure several facets of fitness for thousands 
of mutations to viral proteins25–32. Model performance approaches the 
Spearman correlation (ρ) between experimental replicates, including 
viral replication for influenza26 (ρ = 0.53) and HIV25 (ρ = 0.48) (Extended 
Data Fig. 2 and Supplementary Tables 3 and 4). For SARS-CoV-2, we 
trained EVE across broad prepandemic coronavirus sequences, from 
sarbecoviruses including SARS-CoV-1 to ‘common cold’ seasonal 

coronaviruses including the alphacoronavirus NL63 (Supplementary 
Tables 1 and 2), and compared predictions with measures of expres-
sion (ρ = 0.45) and receptor binding30 (ρ = 0.26) (Extended Data Fig. 2 
and Supplementary Table 4). We note that sites that expressed in 
the DMS experiments but were predicted to be deleterious by EVE 
were frequently in contact with non-assayed domains of the Spike 
protein or with the trimer interface, interactions not captured in the 
receptor-binding domain (RBD) yeast-display experiment (Extended 
Data Fig. 2f).

The second model component, antibody accessibility, is motivated 
by the need to identify potential antibody binding sites without previ-
ous knowledge of B cell epitopes. The accessibility of each residue is 
computed from its negative weighted residue-contact number across 
available three-dimensional conformations (without antibodies), which 
captures both protrusion from the core structure and conformational 
flexibility33 (Supplementary Table 1). Finally, dissimilarity is computed 
using differences in hydrophobicity and charge, properties known to 
affect protein–protein interactions34. This simple metric correlates 
with experimentally measured within-site escape more than individual 
chemical properties, substitution-matrix derived distance or distance 
in the latent space of the EVE model (Extended Data Fig. 3f). To support 
modularity and interpretability of the impact of each component, each 
term is separately standardized and then fed into a temperature-scaled 
logistic function (Supplementary Methods and Supplementary  
Tables 5 and 6).

Anticipating pandemic variation with prepandemic 
data
Extensive surveillance sequencing and experimentation prompted 
by the COVID-19 pandemic have presented a unique opportunity to 
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assess the ability of EVEscape to predict immune evasion before escape 
mutations are observed. To test the model’s capacity to make early 
predictions, we carried out a retrospective study using only informa-
tion available before the pandemic (training on Spike sequences across 
Coronaviridae available before January 2020; Supplementary Tables 1 
and 2). We then evaluated the method by comparing predictions against 
what was subsequently learned about SARS-CoV-2 Spike immune  
interactions and immune escape.

The top predicted escape mutations for the whole of Spike were 
strongly biased towards the RBD and N-terminal domain (NTD), coinci-
dent with the bias for antigenic regions seen in the pandemic35 (Fig. 2a,b 
and Extended Data Fig. 4). Within these domains, EVEscape scores were 
biased towards neutralizing regions—the receptor-binding motif of the 
RBD and the neutralizing supersite36 in the NTD (Fig. 2c and Extended 
Data Fig. 4d). The ability of EVEscape to identify the most immunogenic 
domains of viral proteins without knowledge of specific antibodies or 
their epitopes could provide crucial information for early development 
of subunit vaccines in an emerging pandemic.

We next compared model predictions with mutations that were  
subsequently observed in the pandemic as deposited in GISAID (Global 
Initiative on Sharing All Influenza Data), which contains more than 
750,000 unique sequences. For this analysis, we focused on the RBD 
of Spike, as this domain has been the most extensively studied owing 
to its immunodominance35.

Fifty percent of our top RBD predictions were seen in the pandemic 
by May 2023 (Fig. 3a; this proportion is robust to the threshold defin-
ing top escape mutations). The more often a mutation occurred in the 
pandemic, the more likely it was to be predicted by our method—66% 
of high-frequency observed substitutions were in the top EVEscape 
predictions (Fig. 3b). We expect that the highest-frequency mutations, 

seen in historical variants of concern (VOCs), will be enriched for escape 
variants that provide a fitness advantage in an immune population 
(while not expecting that all single substitutions in the VOCs will con-
tribute to escape) (Fig. 3c and Extended Data Fig. 5).

Not surprisingly, the fitness model component alone (here EVE20) 
was better that the full EVEscape model at predicting mutations seen 
at low frequency in the pandemic (that is, identifying 357 versus 298 of 
mutations seen 100–1,000 times in the pandemic in the top quartile), 
probably because these mutations retain viral function but do not nec-
essarily affect antibody binding or have a strong fitness advantage over 
other strains. This indicates that the immune-specific components of 
EVEscape may reflect important pandemic constraints not represented 
in models of fitness alone20,37 and allow for mutation interpretability. 
For instance, VOC mutations R190S and R408S, with high EVEscape 
but low EVE scores, are in hydrophobic pockets that may facilitate 
significant immune escape38 (Extended Data Fig. 3c). Meanwhile,  
the few VOC mutations (A222V and T547K) with significant EVE—but not 
EVEscape—scores have known functional improvements such as mono-
mer packing and RBD opening but do not affect escape39,40 (Extended 
Data Fig. 3c). Furthermore, the proportion of EVEscape predictions 
seen during the pandemic increased over time—from 3% in December 
2020 to 50% in May 2023 (Fig. 3a)—and should continue to increase, 
an expected trend both as more variants are observed and as adaptive 
immune pressure increases with the growing vaccinated or previously 
infected population. Similarly, the fraction of mutations in VOC strains 
with high EVEscape scores has also increased over time (Fig. 3b).

Our model also predicted escape mutations that were subsequently 
observed in the pandemic in the epitopes of well-known therapeu-
tic monoclonal antibodies under current or former emergency 
use authorization (Supplementary Table 7), for example, N440, 
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E484A/K/Q and Q493R. These predictions demonstrate the interplay 
of our three model components; for instance, the high accessibility as 
well as mutability of E484 results in 50% of all possible mutations at 
this site in the top 2% of EVEscape predictions and includes E484A/K 
mutations in the top 1%—notable for escape from bamlanivimab41 
(Fig. 3d)—because of their high dissimilarity scores. We also identify 
candidate escape mutations in these therapeutic epitopes that have 
not yet been observed at frequencies higher than 10,000—for instance 
variants to K444 and K417 (Supplementary Table 7), a subset of which 
are beginning to appear. This result indicates that escape sites could 
be well predicted before a pandemic and may have concrete applica-
tions for escape-resistant therapeutic design and early warning of 
waning effectiveness.

EVEscape represents a significant improvement over past computa-
tional methods. EVEscape is more than twice as predictive as previous 
unsupervised models42, both at predicting pandemic mutations (50% 
versus 24% of top predictions observed in the pandemic and 66% versus 
17% of highest-frequency mutations predicted) and at anticipating 
experimental measures of antibody escape (0.53 versus 0.24 area under 
the precision-recall curve (AUPRC)) (Fig. 3a–c,e, Extended Data Fig. 5 
and Supplementary Tables 4 and 8). All EVEscape components play 
a part in these predictions, with fitness predictions and accessibility 
metrics identifying sites of escape mutations, whereas dissimilarity 

identifies amino acids that facilitate escape within sites (Extended 
Data Fig. 3). Moreover, other computational methods18,19 focus on 
near-term prediction of strain dominance rather than longer-term 
anticipation of immune evasion, as they rely on pandemic sequences, 
antibody-bound Spike structures or both, limiting their early predic-
tive capacity. It is therefore notable that EVEscape outperforms even 
supervised approaches at predicting mutations seen in the pandemic 
(Extended Data Fig. 5 and Supplementary Table 8).

Comparative accuracy of EVEscape and 
high-throughput experiments
We contextualized the performance of EVEscape in comparison with 
DMSs, which have been invaluable in identifying and predicting viral 
variants that may confer immune escape2–12. However, these experi-
ments require polyclonal or monoclonal antibodies from infected 
or vaccinated people, limiting their early predictive capacity. For 
example, the DMS experiments conducted by 17 months into the 
pandemic (using 36 antibodies and 55 sera samples) were a third 
more predictive (46% versus 32% predicted mutations observed in 
the pandemic) than the experiments conducted 7 months previously 
(using just ten antibodies) (Fig. 3a, Extended Data Fig. 5 and 6 and 
Supplementary Table 6).
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expression or ACE2 binding. d, EVEscape can predict escape mutations in the 
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Omicron, wherein E484A or E484K mutations (both predicted in the top 1% of 
EVEscape Spike predictions) escape binding because of the loss of these salt 
bridges41.e, Precision-recall curve for RBD escape predictions of EVEscape, 
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model42 compared with DMS escape mutations (AUPRC reported with a 
comparison with a ‘null’ model in which escape mutations are randomly 
predicted). expr, expression.; no., number.
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Despite being computed on sequences available more than 17 months 
earlier, EVEscape was as good as or better than the latest DMS scans 
at anticipating pandemic variation (50% versus 46% predicted muta-
tions observed, respectively, when considering the top decile of predic-
tion) (Fig. 3a). As we considered higher-frequency mutations, EVEscape 
increasingly predicted a greater portion of pandemic variations than 
experiments (Fig. 3b) and predicted a larger fraction of mutations in 
VOC strains (Fig. 3c).

Discrepancies between EVEscape and experiments shed light on the 
complementary strengths of these approaches. EVEscape and experi-
ments missed 43 and 48 pandemic mutations, respectively, that were 
predicted by the other method (Fig. 4a,d). These differences could 
indicate model inaccuracies, or they could reflect sparse sampling 
of host sera response in DMS experiments, as well as artefacts from 
experiments testing only the RBD domain and missing the full set of 
in vivo constraints. Indeed, as more antibodies were incorporated in 
experiments, the agreement between EVEscape and experimental 
predictions increased (Extended Data Fig. 6d). Most of the high EVEs-
cape predictions that were not observed in experimental predictions 
were in known antibody epitopes (Fig. 4b and Extended Data Fig. 3e). 
By contrast, those mutations identified by the experiments that were 
below the threshold for EVEscape predictions were often predicted to 
have low fitness owing to high conservation in the alignment at those 
positions (Supplementary Table 6).

The consensus between EVEscape and experiments is also of interest. 
Agreement was especially strong for polyclonal patient sera (Supple-
mentary Table 8); in fact, half of the top 10% of EVEscape RBD sites were 
sera escape sites from experiments4–6,13,14 (Fig. 4c). Whereas antibody 

mutational scans are biased towards antibodies with potential thera-
peutic relevance, the escape mutations from polyclonal sera are of 
particular interest as they depict real pandemic selection pressures in 
convalescent patients and are thus crucial to considerations of reinfec-
tion and vaccine design. For instance, E484, mutated in several VOCs, 
had the highest experimental sera binding and was the top EVEscape 
predicted site.

Adapting EVEscape through its modular framework
The modular design of our framework facilitates its adaptability to the 
specific characteristics of a pandemic and to new data as they become 
available. To consider the effects of insertions and deletions (indels) on 
SARS-CoV-2 Spike immune escape, we replaced the EVE fitness compo-
nent with TranceptEVE43, a recently developed protein large language 
model that has previously shown state-of-the-art performance for 
prediction of the effects of mutations, including indels, which both  
previous computational models and high-throughput experiments 
have been unable to capture for SARS-CoV-2. When applied to the pan-
demic, this model captured the most frequent single insertion and dele-
tion, both at site 144, and each in the top decile of pandemic and random 
indel predictions (Extended Data Fig. 7). We also found that including 
glycosylation in the dissimilarity component for HIV Env, for which 
glycans play an important part in immune escape, improved model 
predictions of high-throughput experimental escape16 (the AUPRC 
increased by 10% when glycosylation was included for HIV; Extended 
Data Fig. 7). We also retrained EVE models with the addition of 11 mil-
lion new sequences collected during the pandemic, which improved 
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agreement with fitness DMS experiments by 20% (Extended Data Figs. 2 
and 8 and Supplementary Tables 1 and 2). This model captured epistatic 
shifts between Wuhan and BA.2 strains, identifying changes in mutation 
fitness in the RBD and near BA.2 mutations, and predicting positive 
epistatic shifts for known convergent omicron mutations and probable 
epistatic wastewater mutations44 (Extended Data Fig. 8).

Strain forecasting with EVEscape
A key application of an escape prediction framework is to identify 
circulating strains with high immune escape potential soon after 
their emergence, enabling the deployment of targeted vaccines and 
therapeutics before their spread. Although the World Health Organiza-
tion seeks to identify new high-risk variants as they arise, new strains 
are occurring at an increasing rate, with tens of thousands of new 
SARS-CoV-2 strains each month now, a scale unfeasible for experi-
mental risk assessment. To create strain-level escape predictions, we 
aggregated EVEscape predictions across all individual Spike muta-
tions in a strain. We evaluated EVEscape strain predictions for their 
alignment with experimental measures of strain immune evasion, 
as well as their identification of known escape strains from pools 

of random sequences and from other strains observed at the same  
pandemic timepoint.

First, we found that prepandemic EVEscape strain scores corre-
lated well with the results of experiments quantifying vaccinated 
sera neutralization of 21 strains19 (ρ = 0.81; Fig. 5a and Supplemen-
tary Table 9) and were better than those obtained with an existing 
computational strain-scoring method (ρ = 0.77)19, even though that 
method used 332 pandemic antibody-Spike structures for the pre-
diction. Second, we found that EVEscape strain scores for VOCs were 
consistently higher than random sequences at the same mutational 
depth; in particular, the Beta, Gamma, Delta, Omicron BA.4, BA.2.12.1, 
BA.2.75, XBB.1.5 and CH.1.1 strain scores were in the top 1% of these 
generated sequence scores (Extended Data Fig. 9). EVEscape strain 
scores for Delta and the later Omicron VOCs were also in the top 
1% against sequences composed only of mutations already known 
to be favourable—mutations sampled from other VOCs (Extended  
Data Fig. 9).

Last, we examined the ability of EVEscape to identify immune-evading 
strains as they emerged in the pandemic. EVEscape scores increased 
throughout the pandemic and were higher for more recent VOCs, 
reflecting their increased propensity for immune escape (Fig. 5b). 
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Moreover, EVEscape scores for newly emerging VOCs were higher 
than those for almost all strains in previous time periods (Fig. 5b). 
Taken together, these results indicate the promise of EVEscape as an 
early-detection tool for picking out the most concerning variants from 
the large pool of available pandemic sequencing data. We therefore 
examine the utility of EVEscape as a tool to identify strains with high 
escape potential as they emerge. We classify ‘high-escape strains’ as 
the top decile of sequences with the highest EVEscape scores of all new 
and distinct strains present during a two-week surveillance window. 
These high-escape strains were consistently the predominant variants 
throughout the pandemic, constituting on average more than 40% of 
circulating sequences (Fig. 5c). Moreover, in the two-week windows in 
which the VOC strains Alpha, Beta, Gamma and Omicron BA.1 emerged, 
each VOC ranked first of hundreds or thousands of new strains (Fig. 5d 
and Extended Data Fig. 9). This demonstrates the ability of EVEscape 
to forecast which strains will dominate as soon as they appear after 
only a single observation, even as experimental testing of all emerging 
strains has become intractable.

To enable real-time variant escape tracking, we make monthly pre-
dictions (Supplementary Table 9) available on our website (evescape.
org), with EVEscape rankings of newly occurring variants from GISAID 
and interactive visualizations of probable future mutations to our 
top predicted strains. In sum, the EVEscape model captures relative 
immune evasion of successful strains and can identify concerning 
strains from pools of random combinations of mutations as well as 
from their temporal peers.

EVEscape generalizes to other viral families with 
pandemic potential
Most viruses with pandemic potential are subjected to far less sur-
veillance and research than SARS-CoV-2. One of the main features of 
EVEscape is the ability to predict viral antibody escape before a pan-
demic—without the consequent increase in data during a pandemic—to 
select vaccine sequences and therapeutics most likely to provide lasting 
protection, to assess strains as they arise and to provide a watch list for 
mutations that might compromise any existing therapies. As one of 
the first comprehensive analyses of escape in these viruses, we applied 
the EVEscape methodology to predict escape mutations to the Lassa 
virus and Nipah virus surface proteins; these viruses cause sporadic 
outbreaks of Lassa haemorrhagic fever in West Africa and highly lethal 
Nipah virus infection outbreaks in Bangladesh, Malaysia and India. 
Crucially, the three mutants present in Lassa that are known to escape 
neutralizing antibodies45 were all in the top 10% of EVEscape predic-
tions, indicating that EVEscape captures features relevant to Lassa 
glycoprotein antibody escape (Fig. 5e and Supplementary Table 6). 
EVEscape predictions also identified ten of 11 known escape mutants 
to Nipah antibodies46–50 (Extended Data Fig. 10).

Moreover, we demonstrate generalizability to influenza hemagglu-
tinin15 and HIV Env16 using DMS evaluation (Extended Data Fig. 6). On 
the basis of these findings, we provide all single mutant escape predic-
tions for these proteins (Supplementary Table 6) to inform active and 
continuing vaccine development efforts with the goal of mitigating 
future epidemic spread and morbidity.

Discussion
One of the greatest obstacles to the development of vaccines and thera-
peutics to contain a viral epidemic is the high genetic diversity derived 
from viral mutation and recombination, especially under pressure from 
the host immune system. An early sense of potential escape mutations 
could inform vaccine and therapeutic design to better curb viral spread. 
Computational models can learn from the viral evolutionary record 
available at pandemic onset and are widely extensible to mutations 
and their combinations. However, new pandemic constraints (such as 

immunity) are unlikely to be captured. To achieve early escape predic-
tion, EVEscape combines a model trained on historical viral evolution 
with a biologically informed strategy using only protein structure and 
biophysical constraints to anticipate the effects of immune selection. 
Through a retrospective analysis of the SARS-CoV-2 pandemic, we 
demonstrate that EVEscape forecasts pandemic escape mutations and 
can predict which emerging strains have high escape potential. This 
computational approach can preempt predictions from experiments 
that rely on pandemic antibodies and sera by many months while pro-
viding similar accuracy.

EVEscape provides surprisingly accurate early predictions of preva-
lent escape mutations but cannot anticipate all constraints unique to 
a new pandemic to determine the precise trajectory of viral evolution. 
This method will be best leveraged in synergy with experiments devel-
oped to measure immune evasion and enhanced with pandemic data 
as they become available. Early in a pandemic, EVEscape can predict 
probable escape mutations for prioritized experimental screening 
with the first available sera samples—validated escape mutations 
could be strong candidates for multivalent vaccines. EVEscape can also 
identify structural regions with high escape potential, so therapeutic 
antibody candidates with few potential escape mutants in their bind-
ing footprint may be accelerated. Later in a pandemic, EVEscape can 
rank emerging strains, as well as mutants on top of prevalent strains, 
for their escape potential, flagging concerning variants early for 
rapid experimental characterization and incorporation into vaccine 
boosters. The model could also be augmented to leverage current 
knowledge on virus-specific immune targeting and mutation toler-
ance from experimental and pandemic surveillance data. In return, 
our computational framework can inform this collective understand-
ing by proposing escape variant libraries for focused experimental 
investigations.

EVEscape is a modular, scalable and interpretable probabilistic 
framework designed to predict escape mutations early in a pandemic 
and to identify observed strains and their mutants that are most likely 
to thrive in a populace with widespread preexisting immunity as the 
pandemic progresses. To this end, we provide EVEscape scores for all 
single mutation variants of SARS-CoV-2 Spike to the Wuhan strain, as 
well as scores for all observed strains and predictions of single muta-
tion effects on the most concerning emerging strain backgrounds, 
with plans to continuously update with new strains. As the framework 
is generalizable across viruses, EVEscape can be used from the start 
for future pandemics, as well as to better understand and prepare for 
emerging pathogens. To further accelerate broad and effective vac-
cine development, we provide EVEscape mutation predictions for all 
single mutations to influenza, HIV, Lassa virus and Nipah virus surface 
proteins. Methods are provided in the Supplementary Information.

Online content
Any methods, additional references, Nature Portfolio reporting summa-
ries, source data, extended data, supplementary information, acknowl-
edgements, peer review information; details of author contributions 
and competing interests; and statements of data and code availability 
are available at https://doi.org/10.1038/s41586-023-06617-0.

1.	 Schmidt, F. et al. Measuring SARS-CoV-2 neutralizing antibody activity using 
pseudotyped and chimeric viruses. J. Exp. Med. 217, e20201181 (2020).

2.	 Dong, J. et al. Genetic and structural basis for SARS-CoV-2 variant neutralization by a 
two-antibody cocktail. Nat. Microbiol. 6, 1233–1244 (2021).

3.	 Greaney, A. J. et al. Complete mapping of mutations to the SARS-CoV-2 Spike receptor- 
binding domain that escape antibody recognition. Cell Host Microbe 29, 44–57.e9 (2021).

4.	 Greaney, A. J. et al. Mapping mutations to the SARS-CoV-2 RBD that escape binding by 
different classes of antibodies. Nat. Commun. 12, 4196 (2021).

5.	 Greaney, A. J. et al. Comprehensive mapping of mutations in the SARS-CoV-2 receptor- 
binding domain that affect recognition by polyclonal human plasma antibodies. Cell Host 
Microbe 29, 463–476.e6 (2021).

6.	 Greaney, A. J. et al. Antibodies elicited by mRNA-1273 vaccination bind more broadly to 
the receptor binding domain than do those from SARS-CoV-2 infection. Sci. Transl Med. 
13, eabi9915 (2021).

http://evescape.org
http://evescape.org
https://doi.org/10.1038/s41586-023-06617-0


Nature  |  Vol 622  |  26 October 2023  |  825

7.	 Starr, T. N. et al. Prospective mapping of viral mutations that escape antibodies used to 
treat COVID-19. Science 371, 850–854 (2021).

8.	 Starr, T. N. et al. SARS-CoV-2 RBD antibodies that maximize breadth and resistance to 
escape. Nature 597, 97–102 (2021).

9.	 Starr, T. N., Greaney, A. J., Dingens, A. S. & Bloom, J. D. Complete map of SARS-CoV-2 RBD 
mutations that escape the monoclonal antibody LY-CoV555 and its cocktail with 
LY-CoV016. Cell Rep. Med. 2, 100255 (2021).

10.	 Tortorici, M. A. et al. Broad sarbecovirus neutralization by a human monoclonal antibody. 
Nature 597, 103–108 (2021).

11.	 Cao, Y. et al. Omicron escapes the majority of existing SARS-CoV-2 neutralizing antibodies. 
Nature 602, 657–663 (2022).

12.	 Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. 
Nature 608, 593–602 (2022).

13.	 Greaney, A. J. et al. A SARS-CoV-2 variant elicits an antibody response with a shifted 
immunodominance hierarchy. PLoS Pathog. 18, e1010248 (2022).

14.	 Greaney, A. J. et al. The SARS-CoV-2 Delta variant induces an antibody response largely 
focused on class 1 and 2 antibody epitopes. PLoS Pathog. 18, e1010592 (2022).

15.	 Doud, M. B., Lee, J. M. & Bloom, J. D. How single mutations affect viral escape from broad 
and narrow antibodies to H1 influenza hemagglutinin. Nat. Commun. 9, 1386 (2018).

16.	 Dingens, A. S., Arenz, D., Weight, H., Overbaugh, J. & Bloom, J. D. An antigenic atlas of 
HIV-1 escape from broadly neutralizing antibodies distinguishes functional and structural 
epitopes. Immunity 50, 520–532.e3 (2019).

17.	 Obermeyer, F. et al. Analysis of 6.4 million SARS-CoV-2 genomes identifies mutations 
associated with fitness. Science 376, 1327–1332 (2022).

18.	 Pucci, F. & Rooman, M. Prediction and evolution of the molecular fitness of SARS-CoV-2 
variants: introducing SpikePro. Viruses 13, 935 (2021).

19.	 Beguir, K. et al. Early computational detection of potential high-risk SARS-CoV-2 variants. 
Comput. Biol. Med. 155, 106618 (2023).

20.	 Frazer, J. et al. Disease variant prediction with deep generative models of evolutionary 
data. Nature 599, 91–95 (2021).

21.	 Hopf, T. A. et al. Mutation effects predicted from sequence co-variation. Nat. Biotechnol. 
35, 128–135 (2017).

22.	 Riesselman, A. J., Ingraham, J. B. & Marks, D. S. Deep generative models of genetic 
variation capture the effects of mutations. Nat. Methods 15, 816–822 (2018).

23.	 Gong, L. I., Suchard, M. A. & Bloom, J. D. Stability-mediated epistasis constrains the 
evolution of an influenza protein. eLife 2, e00631 (2013).

24.	 Starr, T. N. et al. Shifting mutational constraints in the SARS-CoV-2 receptor-binding 
domain during viral evolution. Science 377, 420–424 (2022).

25.	 Haddox, H. K., Dingens, A. S., Hilton, S. K., Overbaugh, J. & Bloom, J. D. Mapping 
mutational effects along the evolutionary landscape of HIV envelope. eLife 7, e34420 
(2018).

26.	 Doud, M. B. & Bloom, J. D. Accurate measurement of the effects of all amino-acid mutations 
on influenza hemagglutinin. Viruses 8, 155 (2016).

27.	 Wu, N. C. et al. Different genetic barriers for resistance to HA stem antibodies in influenza 
H3 and H1 viruses. Science 368, 1335–1340 (2020).

28.	 Roop, J. I., Cassidy, N. A., Dingens, A. S., Bloom, J. D. & Overbaugh, J. Identification of  
HIV-1 envelope mutations that enhance entry using macaque CD4 and CCR5. Viruses 12, 
241 (2020).

29.	 Duenas-Decamp, M., Jiang, L., Bolon, D. & Clapham, P. R. Saturation mutagenesis of the 
HIV-1 envelope CD4 binding loop reveals residues controlling distinct trimer conformations. 
PLoS Pathog. 12, e1005988 (2016).

30.	 Starr, T. N. et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain 
reveals constraints on folding and ACE2 binding. Cell 182, 1295–1310.e20 (2020).

31.	 Chan, K. K., Tan, T. J. C., Narayanan, K. K. & Procko, E. An engineered decoy receptor for 
SARS-CoV-2 broadly binds protein S sequence variants. Sci. Adv. 7, eabf1738 (2021).

32.	 Flynn, J. M. et al. Comprehensive fitness landscape of SARS-CoV-2 Mpro reveals insights 
into viral resistance mechanisms. eLife 11, e77433 (2022).

33.	 Lin, C.-P. et al. Deriving protein dynamical properties from weighted protein contact 
number. Proteins 72, 929–935 (2008).

34.	 Chothia, C. & Janin, J. Principles of protein–protein recognition. Nature 256, 705–708 (1975).
35.	 Piccoli, L. et al. Mapping neutralizing and immunodominant sites on the SARS-CoV-2 

spike receptor-binding domain by structure-guided high-resolution serology. Cell 183, 
1024–1042.e21 (2020).

36.	 Cerutti, G. et al. Potent SARS-CoV-2 neutralizing antibodies directed against spike 
N-terminal domain target a single supersite. Cell Host Microbe 29, 819–833.e7 (2021).

37.	 Rodriguez-Rivas, J., Croce, G., Muscat, M. & Weigt, M. Epistatic models predict mutable 
sites in SARS-CoV-2 proteins and epitopes. Proc. Natl Acad. Sci. USA 119, e2113118119 
(2022).

38.	 Bangaru, S. et al. Structural analysis of full-length SARS-CoV-2 spike protein from an 
advanced vaccine candidate. Science 370, 1089–1094 (2020).

39.	 Ginex, T. et al. The structural role of SARS-CoV-2 genetic background in the emergence 
and success of spike mutations: the case of the spike A222V mutation. PLoS Pathog. 18, 
e1010631 (2022).

40.	 Zhao, L. P. et al. Rapidly identifying new Coronavirus mutations of potential concern in 
the Omicron variant using an unsupervised learning strategy. Preprint at Res. Sq. https://
doi.org/10.21203/rs.3.rs-1280819/v1 (2022).

41.	 Tada, T. et al. Increased resistance of SARS-CoV-2 Omicron variant to neutralization by 
vaccine-elicited and therapeutic antibodies. eBioMedicine 78, 103944 (2022).

42.	 Hie, B., Zhong, E. D., Berger, B. & Bryson, B. Learning the language of viral evolution and 
escape. Science 371, 284–288 (2021).

43.	 Notin, P. et al. TranceptEVE: combining family-specific and family-agnostic models of 
protein sequences for improved fitness prediction. Preprint at bioRxiv https://doi.org/ 
10.1101/2022.12.07.519495 (2022).

44.	 Smyth, D. S. et al. Tracking cryptic SARS-CoV-2 lineages detected in NYC wastewater.  
Nat. Commun. 13, 635 (2022).

45.	 Buck, T. K. et al. Neutralizing antibodies against Lassa virus lineage I. mBio 13, e0127822 
(2022).

46.	 Borisevich, V. et al. Escape from monoclonal antibody neutralization affects henipavirus 
fitness in vitro and in vivo. J. Infect. Dis. 213, 448–455 (2016).

47.	 Wang, Z. et al. Architecture and antigenicity of the Nipah virus attachment glycoprotein. 
Science 375, 1373–1378 (2022).

48.	 Xu, K. et al. Crystal structure of the Hendra virus attachment G glycoprotein bound to a 
potent cross-reactive neutralizing human monoclonal antibody. PLoS Pathog. 9, e1003684 
(2013).

49.	 Dang, H. V. et al. An antibody against the F glycoprotein inhibits Nipah and Hendra virus 
infections. Nat. Struct. Mol. Biol. 26, 980–987 (2019).

50.	 Dang, H. V. et al. Broadly neutralizing antibody cocktails targeting Nipah virus and Hendra 
virus fusion glycoproteins. Nat. Struct. Mol. Biol. 28, 426–434 (2021).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 
4.0 International License, which permits use, sharing, adaptation, distribution 
and reproduction in any medium or format, as long as you give appropriate 

credit to the original author(s) and the source, provide a link to the Creative Commons licence, 
and indicate if changes were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your 
intended use is not permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a copy of this licence, 
visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

https://doi.org/10.21203/rs.3.rs-1280819/v1
https://doi.org/10.21203/rs.3.rs-1280819/v1
https://doi.org/10.1101/2022.12.07.519495
https://doi.org/10.1101/2022.12.07.519495
http://creativecommons.org/licenses/by/4.0/


Article

Reporting summary
Further information on research design is available in the Nature  
Portfolio Reporting Summary linked to this article.
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The data analysed and generated in this study, including multiple 
sequence alignments used in training, single-mutant pandemic fre-
quency data and fitness and escape DMS data used for validation, 
and predictions from our model are available in the Supplementary 
Information and at https://evescape.org/ and https://github.com/
OATML-Markslab/EVEscape. All SARS-CoV-2 pandemic strain sequenc-
ing data are available through https://gisaid.org/. We acknowledge 
all data contributors, that is, the authors and their originating labo-
ratories responsible for obtaining the specimens, and their submit-
ting laboratories for generating the genetic sequence and metadata 
and sharing through the GISAID initiative. The evaluation of this 
study was based on metadata associated with 15,667,960 sequences 
available on GISAID up to 6 June 2023 and accessible at https://doi.
org/10.55876/gis8.230814cp (Supplementary File 1). RBD DMS data 
used for model evaluation are available from https://github.com/
jbloomlab/SARS2_RBD_Ab_escape_maps; a complete list of DMS data 
used for evaluation is available in Supplementary Table 4. We also 
evaluated against clinical antibody escape susceptibility data from 
https://covdb.stanford.edu/. We used the following Protein Data Bank 
(PDB) identifiers: 6VXX, 6VYB, 7CAB, 7BNN, 1RVX, 5FYL, 7TFO, 7PUY, 
5EVM, 7TY0 and 7TXZ (Supplementary Table 1). Previous models of 
antibody escape are available from https://github.com/3BioCompBio/
SpikeProSARS-CoV-2 and https://github.com/brianhie/viral-mutation. 
Multiple sequence alignments were constructed with sequences from 

https://www.uniprot.org/uniref/?facets=identity%3A1.0&query=%2A. 
Source data are provided with this paper.

Code availability
The model code is available at https://github.com/OATML-Markslab/
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Extended Data Fig. 1 | EVEscape model components. We decompose the 
likelihood of a mutation to escape the immune response as the product of three 
components: probability of a given mutation to maintain viral fitness (fitness 
component), to occur in an antibody epitope (accessibility component), and to 
disrupt antibody binding (dissimilarity component). For fitness (bottom), we 
train a virus-specific Bayesian VAE on evolutionarily-related proteins to learn  
a distribution over sequences in that protein family. The ELBO term from the 
VAE is used as a tractable approximation to the sequence log likelihood, with Δ 

ELBOs thus quantifying the relative fitness of a given mutated sequence s with 
respect to the wild type w. Accessibility (top left) is quantified via the negative 
Weighted Contact Number (WCN) for a residue in a given conformation. If there 
are multiple conformations, the maximum negative WCN across conformations 
is used. Dissimilarity (top right) relies on change in key physicochemical 
properties induced by the mutation, such as hydrophobicity and charge. For all 
components, the operator f(.) represents a component-specific temperature- 
scaled logistic transform. Created with BioRender.com.
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Extended Data Fig. 2 | Fitness effects of viral proteins predicted from 
evolutionary sequence models. a) EVE predictions are well correlated with  
a broad range of viral surface protein deep mutation scanning experiments 
surveying protein replication and function for SARS-CoV-2 RBD30,31 and Mpro32, 
H1N1 hemagglutinin26,27 and HIV env25,28,29. b) Site-averaged EVE predictions 
have similar correlations with site-averaged SARS-CoV-2 RBD DMS experiments 
as Potts model DCA37 or EVmutation21. c) EVE predictions have higher 
correlations with Flu H1, HIV Env, and SARS-CoV-2 RBD DMS experiments than 
grammaticality in CSCS42. d) EVE prediction captures a combination of 
SARS-CoV-2 RBD yeast expression and ACE2 binding - features both necessary 

for successful immune escape (EVE spearman with expression = 0.45, EVE 
spearman with ACE2 binding = 0.38 when low expression mutations are 
removed)30. e) The mammalian-cell RBD expression and ACE2 binding 
experiments are highly correlated, likely due to the alternate FACS-binning 
strategy and metric used for this ACE2 binding experiment31. EVE predictions 
are correlated with both measures. f) Site-averaged EVE scores predict several 
sites that tolerate mutants in the yeast-display RBD expression assay30 to be 
deleterious (red box)–many of these mutants are located at the interface 
between RBD and the rest of Spike protein. Sites in the red box in scatterplot 
are shown as spheres on the Spike structure (PDB: 7CAB).

https://doi.org/10.2210/pdb7CAB/pdb


Extended Data Fig. 3 | Understanding the roles of each EVEscape component. 
a) EVEscape is more predictive of high-frequency pandemic mutations than 
ablations of any of its three components. Notably, the ablation of the dissimilarity 
term leads to similar performance at identifying low-frequency mutations, but 
inferior performance at identifying high-frequency mutations. b) Ablation 
analysis indicates that all features of EVEscape contribute to performance in 
predicting RBD escape mutants in deep mutational scanning experiments.  
c) EVEscape is more predictive than EVE alone at capturing frequent mutations 
(seen >50,000 times) in full Spike. VOC mutations with high EVE scores and 
lower EVEscape scores (i.e., A222V and T547K) are known to impact protein 
conformation and to not escape sera neutralization39. Mutations with the highest 
EVEscape but low EVE scores (i.e., R190S and R408S) are in hydrophobic pockets 
that may promote antibody binding38. d) Sites with either high WCN accessibility 

or high EVE fitness predictions have a greater percent of escape mutants (upper). 
WCN and EVE predictions provide similar information about the location of 
Spike epitopes as identified from antibody-Spike crystal structures in RCSB 
PDB (lower). e) Density of standard-scaled EVEscape components differ for 
SARS-CoV-2 RBD escape (and antibody epitope) mutations and non-escape 
mutations for WCN, RSA, EVE, and site-averaged EVEscape. All but 2 sites in the 
top 20% of EVEscape scores are in known antibody footprints or have escape 
mutations in experiments. f) Within-site point biserial correlations between 
residue dissimilarity metrics and SARS-CoV-2 DMS escape data at escape sites 
(sites with 3–17 escape mutations). More sites have a higher correlation for our 
charge-hydrophobicity metric than charge or hydrophobicity alone, BLOSUM62, 
residue size, or EVE latent space L1 distance. Bounds of boxplot are quartiles 
with the median as the measure of center.
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Extended Data Fig. 4 | EVEscape enrichment in regions of SARS-CoV-2 Spike. 
a) RBD (particularly receptor binding motif (RBM)) and N-terminal domain (NTD) 
have significantly enriched average EVEscape scores, relative to a distribution 
of 500 random contiguous regions of the same length from full Spike. Fusion 
peptide (not known for escape mutations) does not have enriched average 
EVEscape scores. b) EVEscape predictions cover diverse epitope regions across 
Spike and diverse RBD antibody classes (Supplementary Methods) (3D structure 
of RBD on the right), including known immunodominant sites (E484, K417, L452) 
(PDB ID: 7BNN). The regions considered are NTD (sequence positions 14 − 306), 

RBD (319 − 542), S1* (543 − 685), and S2 (686 − 1273), where S1* refers to the 
region in S1 between RBD and S2. c) Average region EVEscape predictions are 
highest in RBD and NTD, although NTD is more mutationally tolerant based on 
average fitness (EVE) score. d) EVEscape scores experimental escape mutants 
from narrow antibodies and broad neutralizing antibodies higher than those 
from broad, non-neutralizing antibodies. Sarbecovirus binding breath and 
neutralization from Starr et al. 8 Bounds of boxplot are quartiles with the median 
as the measure of center.

https://doi.org/10.2210/pdb7BNN/pdb


Extended Data Fig. 5 | EVEscape as accurate as experimental scans at 
anticipating pandemic variation: retrospective analysis. a) Top 10% of RBD 
escape predictions computed using either EVEscape, DMS experiments 
(Bloom Set, Table S4), or prior models42 seen by each date over 100 times in 
GISAID (left). DMS experiments are separated into which studies were available 
by each starting date. Top 10% of full Spike escape predictions computed using 
either EVEscape or prior SpikePro model18 seen by each date over 100 times in 
GISAID (right). b) Fraction of top mutations (at different percentage thresholds) 
predicted by EVEscape, DMS experiments, or prior models seen more than 

1000 times in GISAID. c) The majority of Spike mutations in VOC strains have 
high EVEscape scores. d) Venn diagram comparing the top 10% (left) or 20% 
(right) of RBD sites predicted by EVEscape and by DMS experiments (Bloom Set 
Table S4). Each bin is stratified to indicate the number of sites observed >100 
times over the full pandemic (stripe pattern). All sites in the top 20% of EVEscape 
predictions have been observed in the pandemic, and there is significantly more 
overlap between EVEscape and experiments when looking at the top 20% of 
their predictions as compared to the top 10%.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | EVEscape comparison to escape deep mutational 
scans. a) Maximum experimental escape values (over the set of antibodies with 
PDB structures) for each mutation vs. the minimum distance of the mutation 
site to a tested antibody—most escape mutations (to the right of dashed line) 
are to residues with atoms within 5Å of any residue on the antibody. For HIV, 
this is true for the mutations that do not involve loss of glycosylation.  
b) Impact of choice of RBD expression and ACE2 binding thresholds (dashed 
line uses thresholds chosen by Bloom escape papers and our paper) on AUPRC 
(normalized by “null” model – fraction of observed escapes) and # of mutations 
considered as escape. c) Impact of choice of escape threshold on RBD (Bloom 
and Xie data separated), Flu, and HIV AUPRC (normalized) and # of escape 
mutations (dashed line uses escape threshold chosen by our paper).  

d) Comparison of model performance (AUROC) between data from first  
escape DMS study (10 antibodies – Sept. 2020)3 and data available at present 
(338 antibodies, 55 sera samples). e) Precision-Recall curves (normalized by 
“null” model) (left) and receiver-operator curves (right) for models predicting 
DMS escape of SARS-CoV-2 RBD. f) AUPRC (normalized by “null” model) (left) 
and AUROC (right) values for models predicting DMS escape of SARS-CoV-2 
RBD, Flu H1, and HIV Env. Note: The “null” model AUPRC is equivalent to the 
fraction of observed escapes, and therefore AUPRC values are not comparable 
between viral proteins with different fractions of escape mutations (i.e., SARS-
CoV-2 RBD and HIV Env). The fraction of observed escapes in the DMS 
experiments are 0.19 for RBD, for 0.015 for Flu, and 0.006 for HIV – Flu and  
HIV data examined far fewer antibody and sera samples (Table S5).
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Extended Data Fig. 7 | EVEscape adapts to new models: incorporating 
glycosylation and a transformer model of mutation fitness capable of 
scoring indels. a) The EVEscape fitness component can be substituted with a 
new generative model, Trancept-EVE43 that is capable of scoring substitutions 
as well as insertions and deletions. EVEscape using TranceptEVE as the fitness 
model performs equivalently to EVEscape using EVE at predicting substitutions 
from deep mutational scans that escape antibody binding. b) Percent of the top 
10% EVEscape predicted substitutions using either EVE or TranceptEVE that 
were observed at different frequency thresholds during the pandemic shows 
that EVEscape with TranceptEVE is just as good as, or better than, EVEscape 
using EVE at predicting pandemic substitutions. c) Histogram of EVEscape 
scores (with TranceptEVE as a fitness model) for all single deletions to Spike. 

Single deletions seen in the pandemic more than 1000 times (vertical lines) are 
predicted higher than most other single deletions, especially the very frequent 
pandemic deletion Y144- (seen more than a million times). d) Incorporating 
glycosylation in EVEscape improves performance on HIV Env. Precision-Recall 
(with AUPRC normalized by “null” model – fraction of observed escapes) (left) 
and AUROC (right) of EVEscape and EVEscape+Gly models predicting DMS 
escape mutations for SARS-CoV-2 RBD, Flu H1, and HIV Env. e) Scatterplot of 
HIV Env maximum DMS escape vs. EVEscape predictions with and without 
glycosylation. Hue indicates mutations that cause loss of glycosylation.  
The majority of HIV Env escape mutations involve glycosylation loss, and 
EVEscape+Gly performs better on these mutations.



Extended Data Fig. 8 | EVEscape later in a pandemic: using pandemic data 
and capturing epistatic shifts. a) Incorporating pandemic sequences in EVE 
training data results in a greater distinction between the distributions of escape 
and non-escape mutation EVE scores. b) Histogram of epistatic shift values 
between Wuhan and BA.2 strain EVE models for all single mutations, calculated 
as linear regression residuals. Convergent mutations that arise multiple times 
in Omicron lineages (mutations at sites 346, 444, 452, 460, and 486) are 

highlighted on the left. Wastewater mutations seen mid-202144 that were rarely 
seen clinically in patients, and so likely epistatic, are highlighted on the right.  
c) Max epistatic shift magnitudes of mutations at sites mutated in BA.2 shows 
high epistatic shifts concentrated in the RBD. d) Large epistatic shifts for 
mutations on Wuhan and BA.2 strains are concentrated at sites proximal to 
BA.2 mutations.
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Extended Data Fig. 9 | EVEscape strain forecasting. a) VOCs have high 
EVEscape scores compared to combinations of random mutations (sampled 
either from all possible single substitution mutations or from mutations 
previously observed in VOCs) at the same mutation depth, particularly Delta 

and later Omicron strains. b) VOCs are among the highest scoring new, unique 
strains for their two-week period of emergence using a prepandemic EVEscape 
model.



Extended Data Fig. 10 | EVEscape predictions for potential pandemics. 
Site-maximum EVEscape scores for Nipah Virus fusion protein (left) and 
Glycoprotein (right) depict regions of high EVEscape scores. Known escape 

mutations with experimental evidence46–50 (little is known for this understudied 
virus with pandemic potential) are highlighted with spheres.
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