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Bacterial and fungal 
isolation from face masks 
under the COVID‑19 pandemic
Ah‑Mee Park*, Sundar Khadka, Fumitaka Sato, Seiichi Omura, Mitsugu Fujita, 
Kazuki Hashiwaki & Ikuo Tsunoda

The COVID‑19 pandemic has led people to wear face masks daily in public. Although the effectiveness 
of face masks against viral transmission has been extensively studied, there have been few reports 
on potential hygiene issues due to bacteria and fungi attached to the face masks. We aimed to (1) 
quantify and identify the bacteria and fungi attaching to the masks, and (2) investigate whether the 
mask‑attached microbes could be associated with the types and usage of the masks and individual 
lifestyles. We surveyed 109 volunteers on their mask usage and lifestyles, and cultured bacteria 
and fungi from either the face‑side or outer‑side of their masks. The bacterial colony numbers were 
greater on the face‑side than the outer‑side; the fungal colony numbers were fewer on the face‑side 
than the outer‑side. A longer mask usage significantly increased the fungal colony numbers but not 
the bacterial colony numbers. Although most identified microbes were non‑pathogenic in humans; 
Staphylococcus epidermidis, Staphylococcus aureus, and Cladosporium, we found several pathogenic 
microbes; Bacillus cereus, Staphylococcus saprophyticus, Aspergillus, and Microsporum. We also found 
no associations of mask‑attached microbes with the transportation methods or gargling. We propose 
that immunocompromised people should avoid repeated use of masks to prevent microbial infection.

The rapid global spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the resulting 
coronavirus disease 2019 (COVID-19) pandemic have led to urgent efforts to prevent the viral transmission. The 
most traditional and reasonable method to prevent respiratory infections is to wear face masks; several research 
groups have demonstrated its effectiveness against the respiratory viral transmission before the COVID-19 
 pandemic1,2. During the COVID-19 pandemic, increasing lines of evidence have supported the effectiveness of 
wearing face masks against SARS-CoV-2 and the  droplets3,4. However, the World Health Organization (WHO) 
claims that face masks are effective only when used with hand hygiene, the proper use, and disposal of  masks5.

Three types of face masks are commercially available for daily lives in Japan: (1) non-woven, (2) polyurethane, 
and (3) gauze or cloth masks (Fig. 1a,b). Non-woven masks are commonly used worldwide to prevent droplet 
infections by most respiratory microbes, including SARS-CoV-2 (Fig. 1c). Polyurethane masks have been used 
to protect against hay fever, particularly in Asian countries. Since polyurethane masks are easy to breathe and 
washable, the masks have become popular and have been reused several times during the COVID-19 pandemic. 
Although gauze masks are less popular, the masks can be washed, reused, and effectively prevent infections. Thus, 
the Japanese government distributed gauze masks to all citizens because of the shortage of non-woven masks 
during the early stage of the COVID-19 pandemic.

Although the effectiveness of face masks against viral transmission has been extensively  studied3,4, the hygiene 
issues in mask usage remain unclear. The standard mask usage is disposable non-woven masks. In some cases, 
however, people may use non-woven masks repeatedly or use different types of masks in different situations 
depending on their socioeconomic cultures. For example, in Japan, the short supply of non-woven masks led 
to the repeated use of disposable non-woven masks and the use of other types of face masks, such as handmade 
masks and polyurethane  masks6. Even after the shortage of mask supply has been resolved, some people have 
used disposable non-woven masks repeatedly or other types of face masks.

Among environmental pathogens, viruses cannot replicate without infecting host cells; most bacteria and 
fungi can survive and grow on various materials depending on the conditions. Bacteria and fungi are widely 
present on the surface of the materials used in our daily lives (e.g., currency notes and in public transportation 
systems), where we can detect pathogenic bacteria and  fungi7–10. Although a few studies reported bacterial or 
viral contamination on masks in experimental and clinical  settings11–13, there has been no study on what and 
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Figure 1.  Face mask types and the sizes of microbes. (a) Macroscopic and microscopic images of three different 
types of face masks that are commercially available. Non-woven masks have three layers: the pore size of the 
outer and inner layers are identical (50–150 µm); the pore size of the middle layer (considered as a filter) is 
smaller (5–30 µm). Microscopic images were taken by the Olympus Microscope CX33 with the CCD Camera 
DP22 (bar = 500 µm). (b) Pore size, thickness, layer, and intended use of three mask types. The pore size of face 
masks from manufacturers’ instruction was confirmed using the microscopic images shown in (a) (right panels). 
(c) The standard size of microbes and particles (left panel) and their comparisons with the pore size (5 µm) of 
the middle filter of non-woven masks (right schema).
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how many both bacteria and fungi adhere to masks used daily in community setting bases; this is the neglected 
hygiene issue under the COVID-19 pandemic. Since masks can be a direct source of infection to the respiratory 
tract, digestive tract, and skin, it is crucial to maintain their hygiene to prevent bacterial and fungal infections 
that can exacerbate COVID-19. Thus, in this study, following a survey of 109 volunteers on their mask usage 
and lifestyles, we aimed to quantify and identify the bacteria and fungi attached to the face masks by culturing 
microbes isolated from the masks.

Results
Mask types, gender differences, and duration of mask usage. Although the numbers of COVID-
19 patients were relatively low in Japan during the study period, most people wore face masks in public places, 
and all survey participants wore face masks. First, we collected information about the mask types and duration 
of mask usage from 109 participants: 63 male (58%) and 46 female (42%). The majority (78% in total) of the 
participants used non-woven masks (Fig. 2a); the percentage of the non-woven mask users was significantly 
higher than that of the other mask type users (P < 0.001, most of them were polyurethane mask users except a 
few gauze or cloth mask users). Regarding the duration of mask usage, we found that 75% of non-woven mask 
users wore the masks for a single day. In contrast, 58% of the other mask type users wore the same masks for 
two days or more (Fig. 2b). This could be because other mask types, including polyurethane, gauze, and cloth 
masks, are designed washable for repeated usage; the users commonly washed and reused their masks multiple 
times. On the other hand, we found no significant differences between genders regarding the mask types and 
usage duration (Fig. 2a,c).

Microbial counts on the face‑side and outer‑side of masks. Microbes on the masks were cultured 
by pressing the face-side and outer-side of the masks onto agar plates (two plates per participant: the face-side 
and outer-side). We incubated the agar plates for 18 hours (h) and 5 days for bacterial and fungal propagation, 
respectively, and conducted colony counting.

Bacteria (Fig. 2d): We observed bacterial colonies in 99% of the samples on the face-side and 94% on the 
outer-side; no colony was seen in one sample on the face-side and six samples on the outer-side. The colony 
counts of the face-side and outer-side were 168.6 ± 24.7 and 36.0 ± 7.0 [mean ± standard error of the mean (SEM)], 
respectively. We compared the colony counts between the face-side and outer-side in each individual and found 
that the mean colony counts were 13.4-times higher on the face-side of masks (paired t-test, P < 0.001). To evalu-
ate the influence of the mask types and duration of mask usage, we compared the colony counts among those 
who used the mask for one day (3–6 h), two days, and longer based on the mask types [non-woven, others, and 
all (non-woven and others combined)]. We found no significant differences in the colony counts among the 
different mask types, regardless of the duration of usage.

Fungi (Fig. 2e): We observed fungal colonies in 79% of the samples on the face-side and 95% on the outer-
side. The colony counts of fungi were fewer than those of bacteria and the colony counts on the face-side and 
outer-side were 4.6 ± 1.9 and 6.1 ± 1.9 (mean ± SEM), respectively. In contrast to the bacterial colonies, the fungal 
colony counts in each individual were 2.4-times higher on the outer-side than on the face-side (paired t-test, 
P < 0.05). When the participants used the same masks for more than two days, the fungal colony counts were 
increased on the outer-side of masks, compared with the one-day usage. There were no statistical differences 
in the colony counts between non-woven and “others” mask users except for the fungal colony counts of the 
outer-side of masks after one-day usage.

Since females preferentially make up their faces, we examined whether the bacterial and fungal colony counts 
could be different between males and females. Only the bacterial colony counts in the face-side samples of one-
day users were significantly different, lower in females (Fig. S1).

Microbial colonies and lifestyles: gargling, transportation, and natto consumption. We deter-
mined whether individual lifestyles could affect microbial counts on the masks that originate from the host (i.e., 
human) or the environment. One of the environmental factors that seemed to affect the levels of microbes on the 
masks is transportation to commute (Fig. 3a). Here, we classified into three transportation systems: (1) public 
transportation, including trains and buses; (2) private vehicles such as cars and trucks; and (3) walking, bicycles, 
and motorbikes. We found no differences in the bacterial or fungal colony counts on both sides of the masks 
among the three transportation systems.

Next, we evaluated two popular habits in Japan: gargling and natto consumption. Gargling (also known as 
mouth/throat wash) is a Japanese custom that has been believed to prevent respiratory  infections14. Of the par-
ticipants, 67% gargled at least once a day and usually gargled when they returned home. However, there were 
no differences in the bacterial or fungal colony counts among the participants regardless of gargling (Fig. 3b).

Natto is a traditional Japanese fermented food that is sticky when eaten and clings to the mouth and chopsticks 
(Fig. 3c). Natto is made by fermenting soybeans with the spore-forming bacterium Bacillus subtilis, which can 
survive dry conditions. As expected, in this study, we observed the large white colonies formed by B. subtilis. 
According to the questionnaire, 9% and 27% of the participants have eaten natto daily and weekly, respectively; 
19% of the participants ate natto during the experimental period. The participants who ate natto had a signifi-
cantly higher incidence of large white B. subtilis colonies on both sides of the masks than those who did not.

Bacterial colony morphologies and identification. In the bacterial cultures, we observed a variety of 
colonies on the agar plates (Fig. 4a). We morphologically classified the colonies into four major colony forms 
and the other forms: (1) small white, (2) large white, (3) small yellow, (4) medium white, and the other forms, 
including medium to large with yellow or pink, based on the colony size (small < 2 mm, medium 2–10 mm, and 
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Figure 2.  Survey results of the mask usage and microbe colony counts on the face-side and outer-side of the 
face masks. (a) Usage of non-woven masks and other mask types (others) among male and female participants 
(n = 109). Most “others” were polyurethane masks except a few gauze or cloth masks. (b) Duration of usage 
in non-woven, other mask types, and total (non-woven and others combined). The percentage of “others” 
wearing the same masks for two days or more (58%) was significantly higher than that of non-woven mask users 
(25%, P < 0.001). (c) Duration of mask usage in each gender (no significant difference). (d,e) Bacteria (d) and 
fungi (e) on the face-side and outer-side masks were cultured separately after pressing each mask surface onto 
agar plates. Microbial colony counts/plate (left panels); in boxplots, the cross symbols, bars, and dots indicate the 
mean, median, and outliers, respectively. Microbial colony counts on the face-side (middle panels) and outer-
side (right panels) were compared based on the mask types and duration of mask usage. Mean + standard error 
of the mean (SEM). The paired t-test and Student’s t-test were used for statistical analyses. *P < 0.05; **P < 0.001.
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large 10 mm <), color, and frequencies (Fig. 4a,b). The frequency of colonies was calculated in two formulas: (I) 
colony incidence = number of plates containing the colony of interest/total plate number (n = 109) × 100; and (II) 
% total = counts of colonies of interest/total counts of colonies in each plate × 100 (then, the mean of % total from 
all plates was calculated). As shown in Fig. 4a, most participants had more than one colony form. The dominance 
of the four colony forms regarding the colony incidence and mean % total of each colony was overall similar on 
the face-side and outer-side (Fig. 4b). The small white colonies were most frequently observed, with the inci-
dence and % total exceeding 80% and 70%, respectively.

To further determine the bacteria composing each colony, we conducted Gram staining and 16S ribosomal 
RNA (rRNA) sequencing. The 16S rRNA sequencing showed that the small white colonies consisted mainly of 
Staphylococcus epidermidis, and/or S. aureus; the major bacteria species forming the small yellow colonies was 
S. aureus. The large white colonies were the second most observed ones and consisted of B. subtilis, a component 
of natto (as shown in Fig. 3c). The medium white colonies consisted of B. cereus and B. simplex; B. cereus was 

Figure 3.  Lifestyles and microbial colonies: transportation, gargling, and natto consumption. (a) We 
categorized three transportation systems to commute: (1) public transportation: trains and/or buses; (2) private 
vehicles: cars and trucks; and (3) walk/bike: walking, bicycles, and motorbikes. We found no differences in 
the bacterial and fungal colony counts among the three transportation categories on the face-side or outer-
side of masks. (b) Microbial colony counts and the gargling habit. The pie chart showed the percentage of 
participants’ gargling frequency; 67% of the participants gargled at least once a day. We found no differences 
in the bacterial or fungal colony counts among the participants regardless of the gargling frequency. (c) Natto 
consumption and Bacillus subtilis colonies. Natto is a traditional Japanese food made from soybeans fermented 
with B. subtilis that forms large white colonies on agar plates. According to the survey, 9% and 27% of the 
participants have eaten natto daily and weekly, respectively; 19% (21 of 109) of the participants ate natto during 
the experimental period. The participants who ate natto had a significantly higher percentage of B. subtilis 
colonies than those who did not eat natto.
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identified only on the outer-side of masks. Among the colonies, we also identified other bacterial species by 16S 
rRNA sequencing (Fig. 4c). Although most identified bacteria were non-pathogenic, there were several potential 

Figure 4.  Bacterial colony morphologies and identification. (a) We observed a variety of colonies on the 
agar plates and classified the colonies into four major colony forms, morphologically. Representative bacteria 
composed of each colony were visualized with their Gram-stain images. (b) Major colony forms, identified 
bacteria, and frequencies (incidence and % total). (c) Identified bacteria, their localization, and pathogenicity in 
humans.
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pathogenic bacteria in humans as follow: S. aureus (commensal bacterium, but its overgrowth can cause various 
diseases); B. cereus (intestinal bacterium, causing food poisoning); Staphylococcus saprophyticus (urinary tract 
infection); and Pseudomonas luteola (opportunistic pathogen)15–17.

Fungal colonies and identification. After quantifying fungal colonies, we further incubated them for 
another 2 days at 37 °C to induce spore formation. Then, using lactophenol cotton blue staining, we identified 
fungi on the masks based on the colony morphology macroscopically as well as the hypha and spore morphol-
ogy microscopically. Although we could not identify some fungi due to lack of spore formation, we identified 
13 fungal genera (Fig. 5). Among them, more than 20% of the participants had the four fungal genera, namely 
Cladosporium, Fonsecaea, Mucor, and Trichophyton, in common on both sides of the masks. The latter three are 
potentially pathogenic in humans (Fig. 5).

Discussion
In this study, we demonstrated the associations between several factors and microbial contaminations of face 
masks commonly used worldwide during the COVID-19 pandemic. Although some of our findings were what we 
had anticipated, there were several unpredicted findings, which need to be addressed as essential hygiene issues. 
In Table 1, we summarized the major findings and showed the results with statistical differences in bold (P < 0.05). 
The colony counts of face masks were higher in bacteria than in fungi; the bacterial and fungal colony counts 
were higher on the face-side and outer-side, respectively. The longer duration of mask usage correlated with 
increases in the fungal colony counts but not the bacterial colony counts. We also found that non-woven masks 
had fewer fungi than other mask types on the outer-side. Although the bacterial colony counts were comparable 
in all mask types, those on the face-side were lower in females than in males.

We further conducted a receiver operating characteristic (ROC) analysis to see the associations among the 
data obtained in this study shown in Table 2, where the area under the curve (AUC) indicated positive and nega-
tive associations (Figs. 2e, S1). The genus Cladosporium, the most frequently detected fungus in this study, was 
more frequently detected in females (58% females and 29% males). B. subtilis was more frequently detected on 
the masks used by the participants who ate natto at least once a month. In contrast, the transportation systems 
were not associated with bacteria or fungi colony counts. These results were consistent with our findings in Fig. 3, 
where neither public transportation usage nor gargling altered the bacterial or fungal colony counts. On the other 
hand, eating natto strongly increased the B. subtilis colony counts on the masks. Although B. subtilis multiplies 
rapidly and forms colonies large enough to outcompete other bacterial colonies, the presence of B. subtilis did 
not affect the counts of S. epidermidis, the most frequently detected bacterium in this study. The counts of white 
medium colonies seemed to be negatively affected by the presence of B. subtilis (AUC = 0.65). This is consistent 
with the previous  report18 that B. subtilis inhibited the growth of B. simplex, which was a major component of a 
medium-sized white colony in the current study.

Most fungi isolated in this study were opportunistic pathogens rather than pathogenic (Fig. 5), although 
immunocompromised hosts should be advised to wear non-woven masks on a daily basis. We detected B. 
cereus, a foodborne pathogen, on the outer-side of masks in 5% of the participants (Fig. 4c), suggesting that B. 
cereus might adhere to the face masks through hands from feces. Intensive handwashing is recommended, since 
handwashing is effective in reducing the incidence of  diarrhea19.

Although we anticipated that the counts of bacterial colonies could increase due to the duration of mask usage, 
this was not the case. The moisture requirement of bacteria may explain  this20,21. While we wear a face mask, 
the humidity under the mask space becomes approximately 80%, in which bacteria can survive and  grow22,23. 
In contrast, when a used mask is not worn for a long time, particularly at night, it dries out overnight and bac-
teria on the mask are likely to die due to the dry conditions. On the other hand, since fungi and their spores are 
resistant to drying, they can survive under the condition where masks dry out. This explains why fungi tended to 
accumulate and increase with longer mask usage. When we compared the microbial colony counts between the 
mask types, there were no substantial differences in the microbial colony counts between non-woven and other 
mask types. These findings suggest that the higher fungal colony counts on the outer-side of masks would be 
due to the duration of mask usage, but not the mask types. Regarding washable/reusable masks (“other types” of 
masks in the current study), the proper cleaning method for cotton face masks has been recommended to reduce 
the microbial load on the  masks12. However, in the current experiments, we did not find significant differences 
in bacterial or fungal colony numbers on the masks based on washing (Fig. S2). This could be explained by lack 
of information about the proper cleaning method for most mask users (i.e., boiling at 100 °C, washing at 60 °C, 
or ironing with a steam iron) to disinfect the masks.

There were a few studies reporting microbial isolation on masks; a Belgian group investigated bacterial colony 
numbers on face masks in experimental settings, where 13 volunteers wore cotton and surgical masks for 4  h12. 
The authors harvested bacteria by vortexing the masks (without separation into the face-side and outer-side lay-
ers) with PBS and cultured the bacteria on the brain heart infusion (BHI) and lysogeny broth (LB) agar plates. 
They found that the bacterial colony number was higher in the cotton masks than in the surgical masks and 
that the major bacterial genera from the surgical masks were Staphylococcus and Streptococcus. Our study also 
detected Staphylococcus, but not Streptococcus that cannot grow on the BHI plate.

The bacterial colony counts on the face masks were higher in males than in females among the daily users 
(Fig. S1). We suspected that the difference could be associated with a more intensive facial skincare by females 
than by males. Thus, we performed a principal component analysis (PCA), using the survey data based on a daily 
facial skincare routine (three categories: 1. face wash method, 2. lotion/sunscreen usage, and 3. foundation usage) 
as well as the bacterial and fungal colony counts of masks worn for 4 h (Fig. S3a). The proportion of variance of 
principal component (PC) 1 was 44%; PC1 values reflected more intensive facial skincare. Here, the bacterial 
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colony numbers and three skincare categories contributed negatively and positively to PC1 values, respectively. 
This suggested that more intensive facial skincare may decrease bacteria on the face masks. Among the three 
skincare categories in the survey, we tested whether the foundation usage could affect the number of bacterial 
colonies. We recruited volunteers and asked them to wear the mask for 4 h with foundation applied to only the 
left half of their faces. We found no differences in the bacterial colony numbers between the left and right halves 
of the face masks (Fig. S3b). Furthermore, neither lotion/sunscreen usage nor the face wash method statistically 
decreased the bacterial colony numbers by itself (data not shown). Although we did not examine other factors 

Figure 5.  Identification of fungal colonies. We identified fungi by the colony morphology macroscopically 
as well as the hypha and spore morphology microscopically. Ten representative fungal images were shown. 
The white and yellow bars are 10 mm and 5 mm, respectively. Identified fungi, the incidence in this study, 
localization, and pathogenicity were listed.
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that may contribute to the gender difference in the bacterial colony counts, the potential factors include the 
higher facial temperature in  males24 and the gender difference in sweat and  sebum25.

There were several limitations in this study. First, the survey of face masks in this study was not comprehen-
sive, and the sample size was small. Although the face masks were classified into three major types, they can be 
further subdivided according to the thickness, fabric coating, and other factors that may affect microbial growth. 
In experimental settings, the bacterial colony number and composition differed between surgical and cotton face 
masks after 4-h of  wearing12. Second, in all the experiments, since the face masks were put on and taken off with 
bare hands, there was a possibility that microbes on the hands could be transferred to the face masks. Here, we 
intentionally instructed the participants not to wear gloves during the experimental period, since our objectives 
were to examine bacteria and fungi on the face masks under our normal lifestyles. Microbial colonies detected 
from new non-woven masks handled with bare hands were negligible (average 6.5 bacterial and no fungal 
colonies, data not shown). Lastly, there is an argument that the face masks need to be thoroughly washed with 
detergent broth for better isolation of microbes on  masks26. In this study, however, we decided to collect microbes 
on the face masks by simply pressing them onto agar plates. Although this method may leave substantial microbes 
on the mask materials, we believe that easily detachable microbes are more relevant to respiratory infections.

In this study, we focused on a newly emerged-hygiene issue in the current lifestyles of wearing face masks 
during the COVID-19 pandemic. These results will provide new insights into face mask usage to prevent potential 
pathogenic infections.

Methods
Mask layer imaging. A non-woven mask was composed of three layers, each of which was cut with scissors 
and separated manually. A gauze mask was composed of multiple layers, one of which was separated manually. 
We directly placed a polyurethane mask (without sample preparation) or each layer of the non-woven and gauze 
masks on the microscope stage of the CX33 Microscope (Olympus, Tokyo, Japan) and imaged using 10 × objec-
tive lens with the CCD Camera DP22 (Olympus).

Study design. This study was conducted between September and October 2020. The participants were 109 
medical students, 63 males (aged 22.4 ± 0.4) and 46 females (aged 21.2 ± 0.3, no significant difference between 
genders) at Kindai University Faculty of Medicine, Osaka, Japan. All experimental protocols were approved 
by the Institutional Biosafety Committee of Kindai University and performed by the institutional guidelines. 
Informed consent was obtained from all participants. The survey for the participants was as follows: age, gender, 
type of mask, duration of mask usage, transportation, gargling habit, and natto consuming habit. We confirmed 
that no participants were treated with antimicrobial drugs during the experimental periods.

Sample collection, microbial culture, and colony count. To isolate and culture the microbes adhered 
to face masks, the face-side and outer-side of the face masks were pressed onto agar plates (8.6 cm in diameter, 
58  cm2 in area), separately, which were covered with the lids immediately to avoid contamination. The culture 

Table 1.  Factors associated with microbial colony counts on face masks. Boldface indicates a significant 
difference (P < 0.05).

Bacteria Fungi

Colony count/plate 1–1600 1–22

Face-side/outer-side High on the face-side High on the outer-side

Duration of usage No effect High in 2 days ~ 

Mask type No effect Low in non-woven outer-side

Gender Low in female (face-side) High Cladosporium in female

Table 2.  Receiver operating characteristic (ROC) analysis. Boldface shows AUC higher than 0.6 AUC: 0.5–0.6, 
unsatisfactory; 0.6–0.7, satisfactory; 0.7–0.8, good; 0.8–0.9, very good; 0.9–1, excellent. *, †Associations were 
consistent with statistical differences shown in *, Figs. 2; †, S1.

Factor Variable AUC Association

Mask type, non-woven Outer-side fungal count 0·77 Negative*

Gender, female Face-side bacterial count 0·71 Negative†

Usage ≧ 2 days Outer-side fungal count 0·65 Positive*

Gender, female Cladosporium positive 0·65 Positive

B. subtilis, inside White medium colony 0·65 Negative

Natto≧ once/month Bacillus subtilis 0·61 Positive

Public transportation Bacterial or fungal count 0·50 No

B. subtilis, inside Staphylococcus epidermidis 0·42 No
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conditions were as follows: for the bacterial cultures, BHI agar plates (Eiken chemical Co., LTD, Tochigi, Japan) 
or Soybean-casein digest broth with lecithin and polysorbate 80 (SCDLP) agar plates (Eiken chemical Co., LTD,) 
were used and incubated at 37 °C under the aerobic condition for 18 h. We found similar colony numbers and 
morphology between the BHI and SCDLP agar plates. This is consistent with the previous findings reported by 
Delanghe et al., where the bacterial colony numbers from surgical mask samples were comparable between the 
BHI and LB agar  plates12. Thus, in all subsequent experiments, we decided to use BHI agar plates, which are 
widely used as a general-purpose growth medium. In the longer incubation (> 2 days), the fast-growing bac-
terium B. subtilis outgrew the other bacteria, resulting in the difficulty of detecting slow-growing bacteria. For 
the fungal cultures, Sabouraud dextrose agar plates (Nissui pharmaceutical Co., LTD, Tokyo, Japan) were used 
and incubated at 25 °C under aerobic condition for 5 days. Following the primary incubation, we evaluated the 
colony morphology and conducted colony counting. Although we tested the presence of microbes on the middle 
layer (filter layer), we detected only small numbers of the bacterial and fungal colonies (mean ± SEM: bacterial 
colonies, 6.3 ± 4.9; and fungal colonies, 1.0 ± 0.5). Thus, we decided to focus on the microbial colonies on the 
face-side and outer-side of the masks in this study.

Identification of microbial colonies. Bacteria: we collected 94 colonies from the cultured plates, isolated 
DNA, and conducted 16S ribosomal RNA (rRNA) sequencing by the MiSeq (Illumina, San Diego, CA) at the 
Center for Oral Microbiota Analysis (Takamatsu, Japan). We also prepared bacterial smears on glass slides for 
Gram-staining (Fujifilm Wako, Osaka, Japan) and took the microscopic images using the CX33 Microscope with 
the CCD Camera DP22.

Fungi: we selected representative agar plates containing different types of fungal colonies from all cultured 
plates. We further incubated the cultured plates at 37 °C for 2 days to induce the spore formation, stained the 
fungi with lactophenol cotton blue (Muto pure chemical Co., LTD, Tokyo, Japan), and identified them based on 
their colony morphology and  microscopically37.

Data analyses. We conducted PCA using the software RStudio (version 1.4.1106) and Exploratory (Explor-
atory, Inc., CA). For statistical analyses, we conducted the paired t-test, Student’s t-test, and χ2 test. To determine 
the correlations between the data obtained in this study, we conducted an ROC analysis to evaluate the associa-
tion between the factors and outcomes by calculating the AUC. The AUC close to 1 indicates a strong associa-
tion, and less than 0.5 indicates no association.

Data availability
The datasets generated and/or analyzed during the current study are available from the corresponding author 
on reasonable request.
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